2025.06.09 (월)

  • 구름많음동두천 17.6℃
  • 맑음강릉 20.3℃
  • 구름많음서울 18.2℃
  • 맑음대전 18.5℃
  • 맑음대구 19.0℃
  • 맑음울산 20.0℃
  • 맑음광주 18.4℃
  • 맑음부산 19.1℃
  • 맑음고창 18.4℃
  • 맑음제주 21.3℃
  • 구름많음강화 15.3℃
  • 구름조금보은 17.3℃
  • 맑음금산 18.1℃
  • 맑음강진군 18.7℃
  • 구름조금경주시 20.7℃
  • 맑음거제 19.7℃
기상청 제공

보건단체

셀바스 AI, 머신러닝 기술 기반 전립선암 생존 예측 모델 연구 논문 대한암학회 학술지 게재

높은 신뢰성 검증을 통해 추후 임상 현장에서의 모델 활용 기대

인공지능 전문기업 셀바스 AI( KOSDAQ 108860)가 강남세브란스병원 비뇨의학과 구교철 교수와 함께 머신러닝을 활용한 전립선암 생존예측모델의 신뢰성을 외부 검증(External Validation)을 통해 확인해, 이에 관한 논문이 대한암학회에서 발간하는 국제학술지 ‘Cancer Research and Treatment’에 게재됐다고 밝혔다.

 
셀바스 AI와 강남세브란스병원 비뇨의학과 구교철 교수 주도로 진행된 해당 연구에서는 전립선암으로 진단된 환자의 초기 치료법에 따른 생존율 예측 모델 (SCaP calculator)을 인공신경망(Artificial Neural Network, ANN) 기법을 활용해 수립하였고, 해당 예측 모형의 결과값을 외부 데이터를 활용해 분석함으로써 신뢰성을 검증하였다.


이번 연구는 다양한 초기 치료 양식으로 인해 새로이 진단된 전립선암 환자의 개별 특성에 맞는 치료 방법을 결정하는 과정에서 겪는 어려움을 해소하기 위해 진행되었다. 기존의 선형 분석 모델로는 환자 개개인의 특성에 따른 치료 방법 결정 및 생존율의 영향을 예측하기 어려웠던 반면, 인공신경망 알고리즘의 하나인 LSTM ANN(Long Short-term Memory ANN) 모델을 활용해, 환자 특성을 고려한 생존 예측 모델을 수립하고 해당 모델은 더욱 정확한 진단 및 생존율 예측이 가능하다는 점이 연구의 신뢰성 검증을 통해 확인되었다.


해당 인공지능 모델의 신뢰성을 평가하는데 사용된 곡선하면적(AUC)은 5년 기반 모델에서 거세저항성 전립선암 무진행 생존율(CRPC-free survival), 암-특이 생존율(cancer-specific survival) 및 전체 생존율을 대상으로 각 그룹별 0.962, 0.944, 0.884의 높은 수치를 보여, 기존 개발 그룹에 비하여 더욱 우수한 예측 결과를 도출했다.


강남세브란스병원 비뇨의학과 구교철 교수는 “셀바스 AI의 뛰어난 인공지능 기술을 활용한 덕분에 각 환자 상황에 맞는 더 정확한 생존 예측 모델을 수립하고, 추후 임상 현장에서도 해당 모델을 적용할 수 있는 가능성을 증명했다는 점에서 매우 의미 있는 일이다. 또한 아산병원, 아주대병원, 한림대병원에서 동일 환자군 자료로도 검증이 완료되었다. 추가적인 개발 및 연구를 통해 다양한 케이스에 해당 모델을 활용할 수 있을 것으로 기대된다”고 전했다.


셀바스 AI 이병수 NLP Lab 랩장은 “훌륭한 의료 전문기술 및 의료 데이터를 보유하고 있는 강남세브란스병원과의 협업을 통해 성공적으로 우리 알고리즘 모델의 신뢰성을 다시 확인할 수 있었다. 이번 연구 성과를 기반으로 지속해서 후속 연구를 진행하여 더욱 정확한 의료서비스 제공을 지원하겠다”고 밝혔다.

배너
배너

배너

행정

더보기
치은염이나 치주염 예방 하려면... 염화나트륨, 초산토코페롤, 염산피리독신, 알란토인류 등 함유 치약 도움 식품의약품안전처(처장 오유경)는 6월 9일 ‘구강보건의 날’을 맞아 구강에 자주 사용하는 의약외품인 치아미백제, 구중청량제, 치약의 올바른 선택과 사용법, 주의사항 및 온라인 부당광고 사례 등 안전사용 정보를 안내한다. 치약미백제, 구중청량제 및 치약은 제품의 형태에 따라 사용법이 다르므로 제품의 용기·포장이나 첨부문서에 기재된 용법·용량과 주의사항을 반드시 확인한 후 올바르게 사용해야 한다. 또한, 온라인으로 제품을 구매할 때 효능·효과에 관한 거짓·과장 광고에 현혹되지 말고 ‘의약외품’ 표시와 식약처에 허가(신고)된 제품인지 확인*하는 것이 중요하다. <치아미백제> 치아미백제는 착색 또는 변색된 치아를 미백기능이 있는 물질(과산화수소, 카바마이드퍼옥사이드)을 이용해 원래의 색 또는 그보다 희고 밝게 만들어주는 제품으로, 겔제, 첩부제, 페이스트제 등이 있다. 겔제는 치아에 흐르지 않을 정도로 바른 후, 제품마다 정해진 시간동안 겔이 마르도록 입을 다물지 말고 기다렸다가 30분 후에 물로 헹궈낸다. 첩부제는 박리제(치아부착면에 붙은 필름)를 떼어내어 치아에 부착했다가 제품 설명서의 사용시간에 맞춰 제거하며, 페이스트제는 적당량을 칫솔에 묻혀 칫솔

배너
배너

제약ㆍ약사

더보기

배너
배너
배너

의료·병원

더보기
심방세동, ‘피 한 방울’로 예측?...프로테오믹스 기반 "심혈관질환 정밀의료 시대 앞당겨" 연세의대가 혈액을 분석해 심방세동을 예측하는 AI 모델을 개발했다. 연세대학교 의과대학 내과학교실 정보영·김대훈·박한진 교수(심장내과), 의생명과학부 양필성 조교 연구팀은 혈액 속 단백질 정보를 기반으로 심방세동 발생 위험을 예측할 수 있는 AI 모델을 개발했다고 9일 밝혔다. 이번 연구결과는 국제학술지 써큘레이션(Circulation, IF 35.5)에 최근 게재됐다. 심방세동은 가장 흔한 심장 부정맥으로 뇌졸중과 심부전 위험을 높이는 주요 원인이다. 하지만 초기에는 증상이 뚜렷하지 않아 진단을 받지 못한 채 방치되기 쉽다. 이에 따라 질병이 발생하기 전에 위험도를 정확하게 예측하고 고위험군을 선별해 예방적 치료를 시행하는 정밀의료 전략이 필요하다. 연구팀은 약 6만 3천 명의 영국 바이오뱅크(UK biobank) 데이터를 대상으로 혈액 속 단백질과 심방세동 발생 여부와의 연관성을 분석했다. 이를 통해 심방세동 발생과 유의미한 상관관계를 보이는 단백질 후보군을 식별했다. 이후 미국의 ARIC 코호트 연구자들과 협력해 식별한 단백질 후보군이 동일하게 잘 작동함을 확인했다. 연구팀이 개발한 프로테오믹스 모델의 단백질 정보를 이용했을 때 기존 임상예측모델보다 뛰